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ABSTRACT. A sensitivity methodology for nonlinear delay systems arising in one class of cellular HIV infection models is pre-

sented. Theoretical foundations for a typical sensitivity investigation and illustrative computations are given.

1. INTRODUCTION

1.1. Background. Over the past several years, the use of mathematical models as an aid in understanding features of

HIV and other virus infection dynamics has been substantial. Several papers published in the mid nineties provided strong

evidence for the high rate of HIV-1 replication and clearance in infected individuals [16, 37, 51]. By the end of the decade,

the general consensus was thatin vivo, on the order of1010 virions are assembled and cleared every day [25, 35, 39].

In many of these papers, the viral clearance ratec was identified by modeling the disease pathogenesis with a system of

deterministic differential equations, numerically calculating a solution, and then fitting the results with experimental data

(using a nonlinear least squares (NLS) approach), e.g., see [35, 37, 39]. The existence of such a high replication/clearance

rate implies a high mutation rate, thus indicating that pharmacological mono-therapy will ultimately fail, since the virus can

rapidly manifest a resistance to any one drug. More importantly, this knowledge directly contributed to the current practice

of simultaneously administering multiple drugs to HIV positive individuals in an effort to counteract the high mutation rate

of the virus.

Following its success in helping to identify this significant feature of the HIV pathogenesis, the use of mathematical

modeling and parameter identification in the study of HIV experienced a dramatic increase. In particular, in the wake of

the publication of [37], there were papers covering everything from additional and/or alternative compartment formulations

[7, 21, 27, 28, 32, 38, 41, 52, 56, 57] to arguments for and against the use of delay differential equations in modeling the

eclipse phase[12, 13, 15, 24, 26, 29, 30, 31] (including those that addressed the solution stability [30, 31, 44]). Moreover,

in the context of delay equations, many of these papers focused heavily on the inter-relationship between the parameters

describing the drug efficacy�, the length of the eclipse phase� , the infected T-cell death rateÆ, and the virion clearance rate

c [12, 15, 24, 26, 29, 30, 31, 44]. The purpose of this paper is to illustrate our approach, which allows one to develop new
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insights into HIV pathogenesis by utilizing a mathematical tool not typically associated with conventional NLS techniques.

Indeed, there is a precedence for this approach, as is evidenced by previous papers within the HIV modeling literature

that make use of stochastic analysis and inference [18, 45, 46, 49, 54, 58], control theory [19, 53], and nonlinear analysis

[14, 50]. Note that the above survey is not intended to be comprehensive, as there already exist thorough reviews of the field

presented in [33, 34, 36].

Foranysystem of differential equations designed to model real world phenomena, whether it be biological, chemical, or

physical, a common goal is to understand the manner in which the system’s constitutive parameters influence its solution.

These parameters (such asÆ above) are designed to correspond to aspects of the phenomena under investigation (e.g., HIV

pathogenesis), and thus it is desirable to predict how changes in the parameters will affect the solution. Indeed, there are

several papers in the HIV modeling field which focus heavily on the topic (good examples include [41, 43]). One way to

address this question is to perform asensitivity analysis, a mathematical tool developed in the context of modern control

theory and commonly used in mechanical, aerospace, electrical, and structural engineering. The precursor of this technique

can be traced back to an 1833 electrostatics experiment designed to measure the inductance of certain metals [8]. However,

significant activity in this area only arose in the middle part of this century, concomitant with the development of modern

control theory in the late 1930’s. In our analysis, we will employ thesemirelativesensitivity function, though there are other

possibilities, such as thelogarithmicsensitivity function advocated by Bode in his book on electrical network analysis [5].

We direct the interested reader to the following introductory texts [10, 11], advanced texts [20, 47, 48, 55], and surveys of

the field [1, 9]. We also note that the sensitivity analysis described in this paper should not be confused with the statistical

technique of the same name and based on Latin Hypercube Sampling [4, 17].

1.2. Approach. The first step in the sensitivity analysis is to derive thesensitivity equationsby formally taking derivatives

(with respect to a parameter of interest) on both sides of the original equation(s). The solution to this new system (assuming

for the moment it is well-posed) contains information regarding the sensitivity of the original system to perturbations in

the chosen parameter (around somea priori fixed value of that parameter). Hereafter we will refer to the solution to the

sensitivity equations as asensitivity function.

To illustrate the sensitivity procedure, we will examine an HIV population system with compartments described in [3],

summarized in Table 1, and denoted by the vectorx = (V;A;C; T )T . In this case (see [3] for details), our system of

distributed delay differential equations is

(1.1)
_x(t) = L(x(t); xt) + f1(x(t)) + f2(t) for 0 � t � tf

(x(0); x0) = (�(0);�) 2 R4 � C (�r; 0;R4 ) ;
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wherer andtf are finite,xt denotes the function� 7! x(t+ �), � 2 [�r; 0], and for(�; �) 2 R4 � C (�r; 0;R4 ),

L(�; �) =

2
66666664

�c 0 nC 0

0 rv � ÆA 0 0

0 0 rv � ÆC 0

0 0 0 ru � Æu

3
77777775
� + nA

�
Æ(1;2)

�
(4;4)

Z 0

�r

�(�)dP1(�)

+
(
�
Æ(3;2)

�
(4;4)

�
�
Æ(2;2)

�
(4;4)

)

Z 0

�r

�(�)dP2(�) ;

f1(�) =

2
66666664

�p�1�4

�Æ(
P4

i=2 �i)�2 + p�1�4

�Æ(
P4

i=2 �i)�3

�Æ(
P4

i=2 �i)�4 � p�1�4

3
77777775
;

f2(t) = [0; 0; 0; S]
T
; 0 � t � tf :

Here the compartments inx and the parameters (including the probability distributionsP 1, P2) given in the vectorq =

(c; rv ; ru; nA; nC ; Æ; ÆA; ÆC ; Æu; 
; p; P1; P2; S)
T are all described in [3]. A full and thorough sensitivity analysis could

include not only derivatives with respect to the scalar parameters (e.g.,
 or ÆA), but also Fréchet derivatives with respect

to the delay distributions (e.g.,P1 or P2). The following sections include discussions regarding the well-posedness of the

sensitivity equations and an example numerical simulation as well as an interpretation of the results.

Notation Description
V Infectious viral population
A Acutely infected cells
C Chronically infected cells
T Uninfected or target cells

TABLE 1. in vitro model compartments

2. THEORY

For those interested in the mathematical considerations, this section contains theoretical foundations for the well-

posedness of the sensitivity equations. While the results presented here are important because they legitimize our study

of these equations, understanding the techniques in the proofs are not essential to appreciating the simulations and results

presented in Section 3. Therefore, those readers who wish to skip the details in this section may do so with little loss in

understanding the formal aspects of sensitivity analyses.

For our illustrative discussions, we will only consider distributionsP1; P2 that are both differentiable and parameteriz-

able by a mean� and a standard deviation� (i.e., fori = 1; 2, p i(�) = @
@�
Pi(�) andPi(�) = Pi(�;�i; �i) for � 2 [�r; 0]).

Moreover, we further assume that the resulting densitiesp i areC 1 in �i and�i, respectively. To illustrate a sensitivity

analysis, let us fix the forms of the distributionsP1, P2 and consider fort 2 [�r; tf ], the derivative ofx(t;�1) with respect
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to �1 (where�1 is the parameter corresponding to the mean ofp1). If we let (�; �) 2 R
4 � C (�r; 0;R4), t 2 [0; tf ],

�1 > 0, then from results established in [6], we note thatF (t; �; �; �1) = L(�; �;�1) + f1(�) + f2(t) isC 1 in t, �, �, and

�1 under smoothness assumptions (detailed in [3]) onF , L, f1, andf2. For our specific case, to prove that the derivative

of x with respect to�1 exists and is continuous int, we will make use of the following lemma.

Lemma 2.1. There exists a solution to

(2.1)
_y(t) = g1(x(t;�1); y(t)) + g2(�1; yt) + g3(xt(�1); �1; 1) for 0 � t � tf

(y(0); y0) = (	(0);	) 2 R4 � C (�r; 0;R4 ) ;

for x(t;�1) the solution to (1.1), and where for�; � 2 R, �; � 2 R4 , �;  2 C (�r; 0;R4 ),

g1(�; �) = M�� ;

g2(�; ) = nA
�
Æ(1;2)

�
(4;4)

Z 0

�r

 (�)p1(�;�; �1)d�

+
(
�
Æ(3;2)

�
(4;4)

�
�
Æ(2;2)

�
(4;4)

)

Z 0

�r

 (�)p2(�;�2; �2)d�

g3(�; �; �) = nA
�
Æ(1;2)

�
(4;4)

Z 0

�r

�(�)(
@

@�1
p1(�;�; �1))(�)d� ;

and where

M� =

2
66666664

�c� p�4 0 nC �p�1

p�4 rv � ÆA � Æ(2�2 + �3 + �4) �Æ�2 �Æ�2 + p�1

0 �Æ�3 rv � ÆC � Æ(�2 + 2�3 + �4) �Æ�3

�p�4 �Æ�4 �Æ�4 ru � Æu � Æ(�2 + �3 + 2�4)� p�1

3
77777775
:

Proof: On the right side of (2.1), the functiong1 + g2 + g3 satisfies both the differentiability condition (Lemma 4.1)

and the global Lipschitz condition (Lemma 4.2) from [3]. Following the reasoning in the proof of Theorem 4.5 in the same

reference, by defining a convergent sequence of successive approximations, it can then easily be shown that a solution exists

and is unique.

Remark2.2. Note that Lemma 2.1 guarantees the existence of a solution to a system of equations with ageneralinitial

condition	. Recall that in equation (1.1), the initial condition� is independent of� 1 and thus the next step will be to argue

that system (2.1) combined with the trivial initial condition	 = 0 comprises the sensitivity equations.

Theorem 2.3. For the solutionx of (1.1),x has a derivative with respect to the parameter� 1 and for�1 = � > 0, this

derivativev(t) = @
@�1

x(t;�) satisfies (2.1) with the initial condition(	(0);	) = (0; 0) 2 R4 � C (�r; 0;R4 ).

Proof: To prove the existence of a derivative ofx with respect to the parameter� 1, we fix �1 at� > 0, let " 2 R be a

perturbation of�, and for allt 2 [�r; tf ], define

h(t; �; ") = x(t;�+ ")� x(t;�) :
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The overall structure of the proof is thus to show that

@

@�1
x(t;�) = lim

j"j!0

h(t; �; ")

"

exists and is continuous fort 2 [�r; tf ]. We begin by consideringh

h(t; �; ") =

Z t

0

fF (s; x(s;� + "); xs(�+ "); �+ ")�F (s; x(s;�); xs(�); �)g ds

=

Z t

0

fF (s; x(s;� + "); xs(�+ "); �+ ")�F (s; x(s;�); xs(�+ "); �+ ")

+F (s; x(s;�); xs(�+ "); �+ ")�F (s; x(s;�); xs(�); �+ ")

+F (s; x(s;�); xs(�); �+ ")�F (s; x(s;�); xs(�); �)g ds :

According to the Mean Value Theorem [23], we have

h(t; �; ") =

Z t

0

Z 1

0

fDxF (s; x(s;�) + s0h(s; �; "); xs(�+ "); �+ ")(h(s; �; "))

+DxtF (s; x(s;�); xs(�) + s0hs(�; "); �+ ")(hs(�; "))

+D�1F (s; x(s;�); xs(�); �+ s0")(")g ds0ds ;

whereDxF , DxtF , D�1F are the Fréchet derivatives ofF with respect to its second, third, and fourth arguments

respectively. SinceF is C 1 in all its arguments, we then know that there exists linear functions�1
s0;", �

2
s0;", �

3
s0;" (each

parameterized bys0 and") such that

h(t; �; ") =

Z t

0

Z 1

0

�
DxF (s; x(s;�); xs(�); �)(h(s; �; ")) + �1

s0;"(h(s; �; "))

+DxtF (s; x(s;�); xs(�); �)(hs(�; ")) + �2
s0;"(hs(�; "))

+D�1F (s; x(s;�); xs(�); �)(") + �3
s0;"(")

	
ds0ds ;

wherej�1
s0;"j; j�

2
s0;"j; j�

3
s0;"j ! 0 uniformly in s0 asj"j ! 0. Thus fors 2 [0; t], �; � 2 R, �; � 2 R4 , �;  2 C (�r; 0;R4 ),

andg1, g2, g3 as defined in Lemma 2.1,

DxF (s; �; �; �)(�) = g1(�; �)

DxtF (s; �; �; �)( ) = g2(�; )

D�1F (s; �; �; �)(�) = g3(�; �; �) :

Then the equation forh is
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h(t; �; ") =

Z t

0

fg1(x(s;�);h(s; �; ")) + g2(�;hs(�; ")) + g3(xs(�); �; ")g ds

+

Z t

0

Z 1

0

�
�1
s0;"(h(s; �; ")) + �2

s0;"(hs(�; ")) + �3
s0;"(")

	
ds0ds :

Moreover, sinceg1, g2, g3 are all linear in their last arguments, the equation forh can be used to obtain

� max
�2[t�r;t]

Z �

0

�����g1(x(s;�); � ) +
Z 1

0

���1
s0;"

�� ds0���� jh(s; �; ")j
+

����g2(�; � ) +
Z 1

0

���2
s0;"

�� ds0���� khs(�; ")k
+

����g3(xs(�); �; � ) +
Z 1

0

���3
s0;"

�� ds0���� j"j
�
ds ;

wherek�k is the1-norm on[t� r; t]. Thus for constantsK1;K2 > 0, we know that

kht(�; ")k � K1

Z t

0

khs(�; ")k ds+K2tf j"j ;

and a simple application of Gronwall’s inequality implies that

kht(�; ")k � K2 jtf j j"j exp(K1tf ) ;(2.2)

which will be useful in the next step.

Now, if we divide both sides of the equation forh by " so that

h(t; �; ")

"
=

Z t

0

�
g1(x(s; �);

h(s; �; ")

"
) + g2(�;

hs(�; ")

"
) + g3(xs(�); �;

"

"
)

�
ds

+

Z t

0

Z 1

0

�
�1
s0;"(

h(s; �; ")

"
) + �2

s0;"(
hs(�; ")

"
) + �3

s0;"(
"

"
)

�
ds0ds ;

we note that the form of the integrand is strikingly similar to the right side of the equation in (2.1). For equation (2.1),

we denote the solution generated using�1 = � and initial condition(	(0);	) = (0; 0) 2 R
4 � C (�r; 0;R4) asv(t) for

t 2 [�r; tf ]. Moreover, we claim that this solutionv is equal to the limit ofh=" asj"j ! 0.

By Lemma 2.1, we know thatv exists and is continuous fort 2 [�r; tf ]. Clearlyv andh=" are identically zero for

t 2 [�r; 0] for all " > 0, and thus we consider fort 2 [0; tf ]

����v(t)� h(t; �; ")

"

���� �





vt � ht(�; ")

"






1

� max
�2[t�r;t]

����
Z �

0

�
g1(x(s; �); v(s) �

h(s; �; ")

"
) + g2(�; vs �

hs(�; ")

"
)

+g3(xs(�); �; 1�
"

"
)

�
ds�

Z �

0

Z 1

0

�
�1
s0;"(

h(s; �; ")

"
)

+�2
s0;"(

hs(�; ")

"
) + �3

s0;"(
"

"
)

�
d�ds

����
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� max
�2[t�r;t]

�Z �

0

�
jg1(x(s; �); � )j

����v(s)� h(s; �; ")

"

����
+ jg2(�; � )j





vs � hs(�; ")

"






1

+ jg3(xs(�); �; � )j j0j

+

Z 1

0

����1
s0;"

�� ����h(s; �; ")"

����+ ���2
s0;"

�� 



hs(�; ")"






1

+
���3

s0;"

�� j1j� ds0� ds�

�

Z t

0

(jg1(x(s; �); � )j+ jg2(�; � )j)





vs � hs(�; ")

"






1

ds+

+

Z t

0

Z 1

0

����1
s0;"

�� ����h(s; �; ")"

����+ ���2
s0;"

�� 



hs(�; ")"






1

+
���3

s0;"

�� j1j� ds0ds :
By equation (2.2), we know that





vt � ht(�; ")

"






1

�

Z t

0

fjg1(x(s; �); � )j+ jg2(�; � )jg





vs � hs(�; ")

"






1

ds+

+

Z t

0

Z 1

0

K2 jtf j exp(K1tf )
����1

s0;"

��+ ���2
s0;"

��	 j"j
j"j

+
���3

s0;"

�� j1j ds0ds
� K1

Z t

0





vs � hs(�; ")

"






1

ds

+tf

Z 1

0

�
K2tf exp(K1tf )

����1
s0;"

��+ ���2
s0;"

��	+ ���3
s0;"

��	 ds0
� K1

Z t

0





vs � hs(�; ")

"






1

ds+K3(tf )

Z t

0

����1
s0;"

��+ ���2
s0;"

��+ ���3
s0;"

��	 ds0 ;
whereK3(tf ) = tf maxfK2tf exp(K1tf ); 1g. By Gronwall’s inequality, we then have that

����v(t)� h(t; �; ")

"

���� � K3(tf )

Z 1

0

����1
s0;"

��+ ���2
s0;"

��+ ���3
s0;"

��	 ds0eK1tf :

Sincej�1
s0;"j; j�

2
s0;"j; j�

3
s0;"j ! 0 uniformly in s0 as j"j ! 0, we can then conclude that fort 2 [�r; tf ], h=" ! v as

j"j ! 0. Therefore, the partial derivative ofx with respect to�1 (evaluated at�1 = � > 0) exists and satisfies (2.1) with

the initial condition(	(0);	) = (0; 0) 2 R4 � C (�r; 0;R4), which completes the proof.

Remark2.4. The line of reasoning presented here in Lemma 2.1 and Theorem 2.3 concerns the existence and continuity

(in t) of the derivative of asolution to (1.1) with respect to the specific parameter� 1. Similar arguments (with minimal

changes tog3) establish the existence and continuity (int) of derivatives with respect to� 2, �1, and�2. For the parameters

that appear in (1.1) as linear coefficients,g1 andg2 are slightly altered (dependent upon the parameter under consideration),

while g3 � 0. However, these differences do not change the conclusion that the derivative of thesolutionx(t) (with respect

to any parameter appearing on the right side of (1.1)) exists and is continuous in time. One can also establish differentiability

of solutions with respect to discrete delays (i.e., whenP1 or P2 is a Dirac measure) and well-posedness of the appropriate

sensitivity equations. The arguments, while in the spirit of those given above, are however somewhat more tedious and will

not be given here.
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3. ANALYSIS AND RESULTS

In this section we examine some applications of the theory developed in Section 2. All of the simulations presented in

this section were done using Matlab software originally developed in [3] for the purpose of simulating systems of Abstract

Evolution Equations (AEE’s) that are linear in the delay (e.g., system (1.1)). As can be inferred from equation (2.1), in order

to solve sensitivity equations, one needs the solutionx of the original system. Therefore, we use the calculated solution

from [3] with parametersq� 2 Qad (the space of admissible parameters) identified by minimizing the cost

(3.1) J(q) =
1

10

vuut 10X
i=1

(X(ti; q)� bXi)2 ;

overq 2 Qad and wherebX = f bXig is the data from [40] taken at timesftig. However, we are not able to compute the

exact solutionx and thus (as described in [3, 6]) we minimize

(3.2) JN (q) =
1

10

vuut 10X
i=1

(XN (ti; q)� bXi)2 ;

wherexN = (V N ; AN ; CN ; TN) is an appropriate approximation tox andN is an integer describing the accuracy of the

numerical simulation such thatlimN!1 xN (t; q) = x(t; q). The numerical scheme (also described in [3, 6]) is such that as

N ! 1, a minimizerqN� to (8) converges toq�, a minimizer to (8). Both the experimental results and the numerical best

fit solutionxN (using parametersqN� from Table 2) are depicted in Figure 3.1.

Parameter Value Units
nA 0:112 hours�1

nC 0:011 hours�1


 9E � 4 hours�1

ÆA 0:078 hours�1

ÆC 0:025 hours�1

Æu 0:017 hours�1

Æ 1E � 12 (cell hours)�1

p 1:3E � 6 (cell hours)�1

�1 �22:8 hours
�2 �26 hours

TABLE 2. Optimalin vitro model parameter values.

By Theorem 2.3, we can legitimately consider the derivative of both sides of (1.1) with respect to any appropriate

parameter. We first consider the derivative ofx(t) with respect to�1 at�1 = �

(3.3)

d
d�1

_x(t;�) = d
d�1

L(x(t;�); xt(�);�) +
d

d�1
f1(x(t;�)) +

d
d�1

f2(t) for 0 � t � tf

d
d�1

(x(0; �); x0(�)) = d
d�1

(�(0);�) 2 R4 � C (�r; 0;R4 ) :
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If we denotev(t) = d
d�1

x(t;�) (for some specific value of�1 = � > 0), we obtain the sensitivity equations

(3.4)

_v(t) = g1(x(t;�); v(t)) + g2(�; vt) + g3(xt(�); �; 1) for 0 � t � tf

(v(0); v0) = (0; 0) 2 R4 � C (�r; 0;R4) ;

whereg1, g2, g3 are as defined in Lemma 2.1. As before, due to the complexity of the right side of (3.4), we cannot

solve exactly for the solutionv(t). Moreover, we do not havex which appears in the termsg 1 andg3; we only have

an approximationxN to x. Therefore, we must propose a viable numerical scheme to calculate an approximationv N to

solutions of (3.4), withx replaced byxN such thatlimN!1 vN = v.

Hence we considervN an approximate solution to (3.4) withx = xN in the coefficients. This is a linear nonautonomous

system of the form

(3.5)

_vN (t) = A N (t)vN (t) + g2(v
N
t ) + g3(x

N
t ) for 0 � t � tf

�
vN (0); vN0

�
= (0; 0) 2 R4 � C (�r; 0;R4 ) ;

whereN is fixed,xN is given, andA N mapsR4 � C (�r; 0;R4 ) to R4 . Note that this is a special case of the systems

treated in [3], where existence and uniqueness are guaranteed. To obtain convergence ofv N to v (the unique solution to

(3.4)), we turn to [2]. A straightforward extension of the theory presented in [2] to treat nonautonomous linear systems such

as (3.5) will yield, (under the approximation scheme described in [3]), the desired convergence.

If we were to plot simulations of (3.4) (or actually, the approximate solutions defined by (3.5)), interpretations of these

plots would suggest specific effects that changes in�1 would have on the solutionx. Moreover, if we were to also perform

the analogous derivation for the infection ratep, a plot of that sensitivity function would depict the effect that changes inp
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3x 10
7 Total Cells vs. Time

Days

A
+

C
+

T

AEE Optimized Solution
Experimental Data

FIGURE 3.1. Data from [40] and best fit simulationxN of (1.1).
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would have onx. Since�1 andp differ in their units, the sensitivity functions for�1 andp would also have different units,

thus rendering any comparison meaningless. We turn to the sensitivity analysis literature to resolve this issue. To enable

a comparison of the effects that parameters with different units have on the solution, we simply multiply by the parameter

under consideration, e.g.,( @
@�1

x1(t;�);
@

@�1
x2(t;�);

@
@�1

x3(t;�);
@

@�1
x4(t;�)) � �. This form of the sensitivity function is

known as thesemirelativeor semilogarithmicor unnormalizedsensitivity function [10, 11]. Moreover, this form is actually

the differential ofx with respect to�1 at� in the direction�

D�1xi(t;�)[�] = (
@

@�1
xi(t;�)) � �

for i = 1; 2; 3; 4. With this weighting, we now have the tools to rank the parameters with regard to their influence over the

solution.

Figure 3.2 depicts the approximationvN of the solutionv to the (3.4) (at� = �22:8), with each compartment multiplied

by �. It is important to realize that while the y-axis in Figure 3.2 has units of cells or virions respectively, it should still

be thought of as a plot reflecting changes in the state with respect to changes in� 1. In other words, we interpret the

upper-left plot of Figure 3.2 to suggest that for a (positive) change in the mean delay, the virion compartmentV will be

dramatically smaller just before day 10 and then larger around day 12 (relative toV (t;�22:8)). Likewise for a change in

�1, the acutely infected cell compartmentA will be slightly smaller around day 9 and dramatically larger around day 10

(relative toA(t;�22:8)). All the plots depicted in Figure 3.2 suggest that there will be dramatic changes in the solution for

changes in�1, and indeed Figure 3.3 supports this claim (as well as the specific predictions suggested by the interpretation

of Figure 3.2). For this simulation, it is important to note that there is practically no indication that the solutionx will exhibit

any sensitive to�1 until around day5. In other words, for simulations on a short time interval (i.e.,t 2 [�r; 120] hours),

one could easily conclude that the solutionx is insensitive to�1 (in the neighborhood of�1 = � = �22:8 hours).

As another example, let us consider the solution parameterized with respect to the infection ratep, i.e.,x(t) = x(t; p).

Thus the derivative of (1.1) with respect top at ~p = 1:3� 10�6 is

(3.6)

d
dp

_x(t; ~p) = d
dp
L(x(t; ~p); xt(~p)) +

d
dp
f1(x(t; ~p); ~p) +

d
dp
f2(t) for 0 � t � tf

d
dp
(x(0; ~p); x0(~p)) = d

dp
(�(0);�) 2 R4 � C (�r; 0;R4 ) :

As mentioned in the last part of Section 2, the sensitivity equations with respect to different parameters will be slightly

different than (3.4), but unique solutions still exist and are continuous (for each system of sensitivity equations). Figures 3.5

and 3.4 depict the semirelative sensitivity functions forp and� 2, respectively . A comparison of the scales on the vertical

axis in Figure 3.2 versus the axis in Figures 3.5 and 3.4 suggests that changes in� 1 have a more significant influence in the

solutionx than changes in�2 or p (and in one of the compartments by over four orders of magnitude). This result coincides

nicely with one of the primary conclusions from [3], in which we concluded that when fitting the data, adding the second
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FIGURE 3.2. Simulation of the semirelative sensitivity solution with respect to�1 at�1 = � = �22:8.
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delay between than acute and chronic infection was not as significant as inclusion of the delay between viral infection and

viral production.
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FIGURE 3.4. Simulation of semirelative sensitivity solution with respect to the infection ratep for ~p =
1:3� 106.

Now that we have established the framework for calculating semirelative sensitivity functions, let us consider how to

rank the influence that changes in the individual parameters have upon the solutionx. Clearly, there are many options, but

for simplicity, we will rank the parameters according to the magnitude of the1-norm, e.g., for the virion compartment and

the sensitivity with respect toÆA, we consider

max
t2[0;tf ]

jDÆAV (t; 0:0776) [0:0776]j :

To illustrate our reasoning, we will focus on just the virion compartmentV . Of the parameters over which we performed our

NLS in [3], the chosen metric was largest for the parameters�1, nA, ÆA, andÆu. Figure 3.6 depicts (for the compartment

V ), the absolute values of the semirelative sensitivity functions with respect to� 1, nA, ÆA, andÆu, for t 2 [8:5; 15] (the

domain where there is the most activity in the sensitivity functions). The interpretation of this figure strongly suggests that

ÆA andnA have the strongest influence over the solution in the virion compartment (in the chosen1-norm). Therefore, for

the use of equation (1.1) (as a model to simulate HIV pathogenesis), both the viral production rate and the death rate for

acutely infected cells (nA andÆA respectively) should be given top priority when choosing which parameters to determine

with a high degree of accuracy. In other words, these parameters play an important role in the model and obtaining good
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values for them is more important to the system response than good values for other parameters to which solutions are less

sensitive.
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FIGURE 3.5. Simulation of semirelative sensitivity solution with respect to the mean delay between acute
and chronic infection�2 for ~�2 = �26.
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4. CONCLUDING REMARKS

As discussed in Section 1.1, the taking of a derivative (with respect to parameters) of the equations governing a system

is not a new idea and indeed has been around (in some form) for at least 170 years. Within control theory and engineering

applied to physical systems, the forms of the fundamental mathematical models often are, for the most part, relatively well

established and not so open to debate. For example, in some investigations, it may not be fruitful to question the significance

of the viscosity parameter in the Navier-Stokes equations (although sensitivity of flow patterns to viscosity is sometimes very

important, see [42]). However, the constitutive parameters and forms of the mathematical models employed in the biological

sciences are frequently not as well agreed upon, and indeed (as is evidenced by the literature) open to considerable debate.

Since the current approach to sensitivity was originally developed in the context of control theory, the cited literature is

(understandably) biased toward that field; a considerable proportion of the papers are devoted to analyzing the sensitivity

of transfer functions and eigenvalues. Thus the application of mathematically rigorous sensitivity analyses to dynamical

systems designed to model biological phenomena does not seem to be common practice. Indeed, many sensitivity studies

often involve copious simulations. As such, there are many possibilities that have not been fully examined.

In the analysis presented in this paper, we only considered first derivatives of the components. In theory, we could

have examined derivatives with respect to multiple parameters@
2x

@nA@ÆA
(joint sensitivities), an analysis of which could be

used to ascertain the independent identifiability of parameters. We could have also taken a derivative with respect to the

initial conditions, which (as is intuitive) would suggest the influence of the initial conditions over the solution (this can be

extremely useful in certain biological investigations). Finally, we could have considered the derivative of theleast squares

functional (3.1)with respect to a parameter (as was explored in [22]), which could then be used as part of a jacobian in an

optimization algorithm (as part of a parameter estimation scheme).

The process of taking the derivative of a system with respect to a parameter is usually not an exceedingly challenging task

and it is important to remember that the sensitivity function only reveals the local behavior (since it is a derivative) around

the fixed parameter value. However, this idea can yield useful insights into the solution of complex systems (even those

with nonlinearities and delays) such as (1.1). Effectively, the technique of using simulation sensitivity functions presented

in this paper is a more efficient (and mathematically rigorous) way to attain insight into a system than manually adjusting a

parameter and observing the effect on the solution through massive simulation efforts.
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